Fat Tailed Dunnart Descriptive Essay



Fat Tailed Dunnart (Sminthopsis crassicaudata)
The Fat-tailed Dunnart is a species of mouse-like marsupial from the same family as little red kaluta, quolls, and the Tasmanian devil. It has an average body length of 60–90 mm with a tail of 45–70 mm. The fat tailed dunnart scientific name Sminthopsis crassicaudata is the most commonly kept dunnart in Australia. There are more than a dozen types of dunnarts all completely carnivorous and marsupials. As the name suggests fat tailed dunnarts are able to store a body fat in their tails, which helps them survive the winter months in the wild. The fat tail dunnart is a small species with an average of 20 grams in body weight, they live in areas in the southern part of Australia in habitats such as open woodlands, saltbush and farm lands. In certain areas they were once common, but are now endangered due to feral cats and fox’s.

They should be housed the in a well-ventilated enclosures, one per enclosure. They must be kept in enclosures or fish tanks with a foot print of 2x18 or larger as they need room to roam and explore.

Dunnarts should be fed a varied diet in their feeding regime; Mealworms twice per week, crickets and woodies twice per week on alternate days. Feeding good quality cat food with whiskers is a favorite. A meat formula consisting of: 500 grams of heart smart lean beef mince, 2 raw chicken eggs, 1 cup of wombaroo insectivore mix and ½ teaspoon calcium supplement, this is mixed well and frozen into 1 table spoon portions. Feeding this meat formula is easy as one portion is defrosted per pair and any that is left over the following morning is discarded.


1. Smith KK. Comparative Patterns of Craniofacial Development in Eutherian and Metatherian Mammals. Evolution. 1997;51(5):1663–78. doi: 10.1111/j.1558-5646.1997.tb01489.x[PubMed]

2. Smith KK. Heterochrony revisited: the evolution of developmental sequences. Biological Journal of the Linnean Society. 2001;73(2):169–86. doi: 10.1111/j.1095-8312.2001.tb01355.x

3. Werneburg I, Sánchez-Villagra MR. The early development of the echidna, Tachyglossus aculeatus (Mammalia: Monotremata), and patterns of mammalian development. Acta Zoologica. 2011;92(1):75–88. doi: 10.1111/j.1463-6395.2009.00447.x

4. Werneburg I, Tzika AC, Hautier L, Asher RJ, Milinkovitch MC, Sanchez-Villagra MR. Development and embryonic staging in non-model organisms: the case of an afrotherian mammal. J Anat. 2013;222(1):2–18. Epub 2012/04/28. doi: 10.1111/j.1469-7580.2012.01509.x ; PubMed Central PMCID: PMCPMC3552411. [PMC free article][PubMed]

5. Jeffery JE, Richardson MK, Coates MI, Bininda-Emonds OR. Analyzing developmental sequences within a phylogenetic framework. Systematic biology. 2002;51(3):478–91. Epub 2002/06/25. doi: 10.1080/10635150290069904 . [PubMed]

6. Ashwell KWS, Waite PME, Marotte L. Ontogeny of the Projection Tracts and Commissural Fibres in the Forebrain of the Tammar Wallaby (Macropus eugenii): Timing in Comparison with Other Mammals. Brain, Behavior and Evolution. 1996;47(1):8–22. [PubMed]

7. Darlington RB, Dunlop SA, Finlay BL. Neural development in metatherian and eutherian mammals: variation and constraint. J Comp Neurol. 1999;411(3):359–68. Epub 1999/07/22. . [PubMed]

8. Renfree MB, Holt A, Green S, Carr J, Cheek D. Ontogeny of the brain in a marsupial (Macropus eugenii) throughout pouch life. I. Brain growth. Brain Behav Evol. 1982;20:57–1. [PubMed]

9. Weisbecker V, Goswami A. Brain size, life history, and metabolism at the marsupial/placental dichotomy. Proceedings of the National Academy of Sciences. 2010;107(37):16216–21. doi: 10.1073/pnas.0906486107[PMC free article][PubMed]

10. Workman AD, Charvet CJ, Clancy B, Darlington RB, Finlay BL. Modeling transformations of neurodevelopmental sequences across mammalian species. J Neurosci. 2013;33(17):7368–83. Epub 2013/04/26. doi: 10.1523/JNEUROSCI.5746-12.2013 ; PubMed Central PMCID: PMCPMC3928428. [PMC free article][PubMed]

11. Halley AC. Minimal variation in eutherian brain growth rates during fetal neurogenesis. Proceedings Biological sciences / The Royal Society. 2017;284(1854). Epub 2017/05/12. doi: 10.1098/rspb.2017.0219 ; PubMed Central PMCID: PMCPMC5443945. [PMC free article][PubMed]

12. Nelson JE. Developmental staging in a marsupial Dasyurus hallucatus. Anat Embryol (Berl). 1992;185(4):335–54. Epub 1992/01/01. . [PubMed]

13. O'Rahilly R, Müller F. Developmental stages in human embryos: Including a revision of Streeter's "Horizons" and a survey of the Carnegie collection. Connecticut: Merider-Stinehour Press; 1987. 306 p.

14. Streeter G. Developmental Horizons In Human Embryos Description Or Age Groups XIX, XX, XXI, XXII, And XXIII, Being The Fifth Issue Of A Survey Of The Carnegie Collection. Streeter G, editor. Baltimore1957.

15. Thieler K. The House Mouse: Atlas of Embryonic Development. New York: Springer-Verlag; 1989. 178 p.

16. McCrady E. The embryology of the opossum. Am Anat Memoirs. 1938;16:1–233.

17. Rakic P. Specification of cerebral cortical areas. Science. 1988;241(4862):170–6. doi: 10.1126/science.3291116[PubMed]

18. Cummings DM, Malun D, Brunjes PC. Development of the anterior commissure in the opossum: midline extracellular space and glia coincide with early axon decussation. J Neurobiol. 1997;32(4):403–14. Epub 1997/04/01. . [PubMed]

19. Shang F, Ashwell KWS, Marotte LR, Waite PME. Development of commissural neurons in the wallaby (Macropus eugenii). The Journal of Comparative Neurology. 1997;387(4):507–23. doi: 10.1002/(sici)1096-9861(19971103)387:4<507::aid-cne3>3.0.co;2–6[PubMed]

20. Molnar Z, Knott GW, Blakemore C, Saunders NR. Development of thalamocortical projections in the South American gray short-tailed opossum (Monodelphis domestica). J Comp Neurol. 1998;398(4):491–514. Epub 1998/08/26. . [PubMed]

21. Poiley S. A systematic method of breeder rotation for non-inbred laboratory animal colonies. Proc Anim Care Panel. 1960;10:159–66.

22. Morton SR. An ecological study of Sminthopsis crassicaudata (Marsupialia: Dasyuridae) III. Reproduction and life history. Aust Wildl Res. 1978;5:183–211.

23. Dreher B, Robinson SR. Development of the retinofugal pathway in birds and mammals: evidence for a common 'timetable'. Brain Behav Evol. 1988;31(6):369–90. Epub 1988/01/01. . [PubMed]

24. Godfrey GK, Crowcroft P. Breeding the Fat-tailed marsupial mouse in captivity. International Zoo Yearbook. 1971;11(1):33–8. doi: 10.1111/j.1748-1090.1971.tb01839.x

25. Dunlop SA, Tee LB, Lund RD, Beazley LD. Development of primary visual projections occurs entirely postnatally in the fat-tailed dunnart, a marsupial mouse, Sminthopsis crassicaudata. J Comp Neurol. 1997;384(1):26–40. Epub 1997/07/21. . [PubMed]

26. Dunlop SA, Lund RD, Beazley LD. Segregation of optic input in a three-eyed mammal. Exp Neurol. 1996;137(2):294–8. Epub 1996/02/01. doi: 10.1006/exnr.1996.0028 . [PubMed]

27. Watson C, Puelles L. Developmental gene expression in the mouse clarifies the organization of the claustrum and related endopiriform nuclei. Journal of Comparative Neurology. 2017;525(6):1499–508. doi: 10.1002/cne.24034[PubMed]

28. Puelles L. Development and Evolution of the Claustrum In: Smythies John, Edelstein Larry, Ramachandran VS, editors. The Claustrum: Structural, Functional, and Clinical Neuroscience. San Diego: Academic Press; 2014. p. 119–76.

29. Suárez R. Evolution of Telencephalic Commissures: Conservation and Change of Developmental Systems in the Origin of Brain Wiring Novelties In: Kaas JH, editor. Evolution of Nervous Systems (Second Edition). Oxford: Academic Press; 2017. p. 205–23.

30. Suárez R, Gobius I, Richards LJ. Evolution and development of interhemispheric connections in the vertebrate forebrain. Frontiers in human neuroscience. 2014;8:497 Epub 2014/07/30. doi: 10.3389/fnhum.2014.00497 ; PubMed Central PMCID: PMCPmc4094842. [PMC free article][PubMed]

31. Ashwell KW, Marotte LR, Li L, Waite PM. Anterior commissure of the wallaby (Macropus eugenii): adult morphology and development. J Comp Neurol. 1996;366(3):478–94. Epub 1996/03/11. doi: 10.1002/(SICI)1096-9861(19960311)366:3&lt;478::AID-CNE8&gt;3.0.CO;2-1 . [PubMed]

32. Gobius I, Morcom L, Suarez R, Bunt J, Bukshpun P, Reardon W, et al. Astroglial-mediated remodeling of the interhemispheric midline is required for the formation of the corpus callosum. Cell reports. 2016;17(3):735–47. Epub 2016/10/13. doi: 10.1016/j.celrep.2016.09.033 ; PubMed Central PMCID: PMCPMC5094913. [PMC free article][PubMed]

33. Gobius I, Suárez R, Morcom L, Paolino A, Edwards TJ, Kozulin P, et al. Astroglial-mediated remodeling of the interhemispheric midline during telencephalic development is exclusive to eutherian mammals. Neural Development. 2017;12(1):9 doi: 10.1186/s13064-017-0086-1[PMC free article][PubMed]

34. Goswami A, Randau M, Polly PD, Weisbecker V, Bennett CV, Hautier L, et al. Do developmental constraints and high integration limit the evolution of the marsupial oral apparatus?Integrative and Comparative Biology. 2016;56(3):404–15. doi: 10.1093/icb/icw039[PMC free article][PubMed]

35. Weisbecker V, Goswami A, Wroe S, Sánchez-Villagra MR. Ossification heterochrony in the Therian postcranial skeleton and the marsupial-placental dichotomy. Evolution. 2008;62(8):2027–41. doi: 10.1111/j.1558-5646.2008.00424.x[PubMed]

36. Keyte AL, Smith KK. Heterochrony and developmental timing mechanisms: changing ontogenies in evolution. Seminars in cell & developmental biology. 2014;34:99–107. Epub 2014/07/06. doi: 10.1016/j.semcdb.2014.06.015 ; PubMed Central PMCID: PMCPMC4201350. [PMC free article][PubMed]

37. Sánchez-Villagra MR. Comparative patterns of postcranial ontogeny in therian Mammals: An analysis of relative timing of ossification events. Journal of Experimental Zoology. 2002;294(3):264–73. doi: 10.1002/jez.10147[PubMed]

38. Chew KY, Shaw G, Yu H, Pask AJ, Renfree MB. Heterochrony in the regulation of the developing marsupial limb. Developmental Dynamics. 2014;243(2):324–38. doi: 10.1002/dvdy.24062[PubMed]

39. Kelly EM, Sears KE. Limb specialization in living marsupial and eutherian mammals: constraints on mammalian limb evolution. Journal of Mammalogy. 2011;92(5):1038–49. doi: 10.1644/10-MAMM-A-425.1

40. Halley AC. Prenatal Brain-Body Allometry in Mammals. Brain Behav Evol. 2016;88(1):14–24. Epub 2016/08/27. doi: 10.1159/000447254 . [PubMed]

41. Passingham RE. Rates of brain development in mammals including man. Brain Behav Evol. 1985;26(3–4):167–75. Epub 1985/01/01. . [PubMed]

42. Sacher GA, Staffeldt EF. Relation of Gestation Time to Brain Weight for Placental Mammals: Implications for the Theory of Vertebrate Growth. The American Naturalist. 1974;108(963):593–615.

43. Schneider NY, Fletcher TP, Shaw G, Renfree MB. The olfactory system of the tammar wallaby is developed at birth and directs the neonate to its mother's pouch odours. Reproduction. 2009;138(5):849–57. doi: 10.1530/REP-09-0145[PubMed]

44. Ashwell KWS, Marotte LR, Cheng G. Development of the Olfactory System in a Wallaby (Macropus eugenii). Brain, Behavior and Evolution. 2008;71(3):216–30. doi: 10.1159/000119711[PubMed]

45. Rowe TB, Macrini TE, Luo ZX. Fossil evidence on origin of the mammalian brain

0 thoughts on “Fat Tailed Dunnart Descriptive Essay”

    -->

Leave a Comment

Your email address will not be published. Required fields are marked *