Erik Sudderth Dissertation Abstract

The system can't perform the operation now. Try again later.
This "Cited by" count includes citations to the following articles in Scholar. The ones marked * may be different from the article in the profile.
Get my own profile

Co-authors

  • Michael I. JordanProfessor of EECS and Professor of Statistics, University of California, BerkeleyVerified email at cs.berkeley.edu
  • Emily B. FoxUniversity of WashingtonVerified email at uw.edu
  • Michael C. HughesPost-doctoral researcher at Harvard University SEASVerified email at michaelchughes.com
  • Michael J. BlackMax Planck Institute for Intelligent Systems and AmazonVerified email at is.mpg.de
  • Antonio TorralbaProfessor of Computer Science, MITVerified email at csail.mit.edu
  • Deqing SunResearch Scientist, NVIDIA ResearchVerified email at cs.brown.edu
  • Martin WainwrightProfessor of EECS and Statistics, UC BerkeleyVerified email at berkeley.edu
  • Alexander IhlerUniversity of California, IrvineVerified email at ics.uci.edu
  • Michael I MandelAssistant Professor of Computer and Information Science at Brooklyn College, CUNYVerified email at sci.brooklyn.cuny.edu
  • Stuart RussellProfessor of Computer Science, University of California, BerkeleyVerified email at cs.berkeley.edu
  • Dae Il KimBrown UniversityVerified email at cs.brown.edu
  • Michael IsardResearch Scientist, GoogleVerified email at google.com
  • Hanspeter PfisterProfessor of Computer Science, Harvard UniversityVerified email at seas.harvard.edu
  • Jyri J. KivinenPostdoctoral Researcher, Aalto UniversityVerified email at aalto.fi
  • David BleiProfessor of Statistics and Computer Science, Columbia UniversityVerified email at columbia.edu
  • Jonas WulffGraduate Student, Max Planck Institute for Intelligent SystemsVerified email at tuebingen.mpg.de
  • Adams, N. J., & Williams, C. K. I. (2003). Dynamic trees for image modelling. Image and Vision Computing, 21, 865–877. CrossRefGoogle Scholar

  • Amit, Y., & Trouvé, A. (2007). Generative models for labeling multi-object configurations in images. In J. Ponce, et al. (Ed.), Toward category-level object recognition. Berlin: Springer. Google Scholar

  • Barnard, K., Duygulu, P., Forsyth, D., de Freitas, N., Blei, D. M., & Jordan, M. I. (2003). Matching words and pictures. Journal of Machine Learning Research, 3, 1107–1135. MATHCrossRefGoogle Scholar

  • Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4), 509–522. CrossRefGoogle Scholar

  • Bienenstock, E., Geman, S., & Potter, D. (1997). Compositionality, MDL priors, and object recognition. In Neural information processing systems 9 (pp. 838–844). Cambridge: MIT Press. Google Scholar

  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022. MATHCrossRefGoogle Scholar

  • Borenstein, E., & Ullman, S. (2002). Class-specific, top-down segmentation. In European conference on computer vision (Vol. 2, pp. 109–122). Google Scholar

  • Bosch, A., Zisserman, A., & Muñoz, X. (2006). Scene classification via pLSA. In European conference on computer vision (pp. 517–530). Google Scholar

  • Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), 679–698. CrossRefGoogle Scholar

  • Casella, G., & Robert, C. P. (1996). Rao–Blackwellisation of sampling schemes. Biometrika, 83(1), 81–94. MATHCrossRefMathSciNetGoogle Scholar

  • Csurka, G., et al. (2004). Visual categorization with bags of keypoints. In ECCV workshop on statistical learning in computer vision. Google Scholar

  • De Iorio, M., Müller, P., Rosner, G. L., & MacEachern, S. N. (2004). An ANOVA model for dependent random measures. Journal of the American Statistical Association, 99(465), 205–215. MATHCrossRefMathSciNetGoogle Scholar

  • DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics, 44, 837–845. MATHCrossRefGoogle Scholar

  • Escobar, M. D., & West, M. (1995). Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90(430), 577–588. MATHCrossRefMathSciNetGoogle Scholar

  • Fei-Fei, L., & Perona, P. (2005). A Bayesian hierarchical model for learning natural scene categories. In IEEE conference on computer vision and pattern recognition (Vol. 2, pp. 524–531). Google Scholar

  • Fei-Fei, L., Fergus, R., & Perona, P. (2004). Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. In CVPR workshop on generative model based vision. Google Scholar

  • Fergus, R., Fei-Fei, L., Perona, P., & Zisserman, A. (2005). Learning object categories from Google’s image search. In International conference on computer vision (Vol. 2, pp. 1816–1823). Google Scholar

  • Fink, M., & Perona, P. (2004). Mutual boosting for contextual inference. In Neural information processing systems 16. Cambridge: MIT Press. Google Scholar

  • Fischler, M. A., & Elschlager, R. A. (1973). The representation and matching of pictorial structures. IEEE Transactions on Computers, 22(1), 67–92. CrossRefGoogle Scholar

  • Frey, B. J., & Jojic, N. (2003). Transformation-invariant clustering using the EM algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(1), 1–17. CrossRefGoogle Scholar

  • Gelfand, A. E., Kottas, A., & MacEachern, S. N. (2005). Bayesian nonparametric spatial modeling with Dirichlet process mixing. Journal of the American Statistical Association, 100(471), 1021–1035. MATHCrossRefMathSciNetGoogle Scholar

  • Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis. London: Chapman & Hall. MATHGoogle Scholar

  • Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences, 101, 5228–5235. CrossRefGoogle Scholar

  • He, X., Zemel, R. S., & Carreira-Perpiñán, M. A. (2004). Multiscale conditional random fields for image labeling. In IEEE conference on computer vision and pattern recognition (Vol. 2, pp. 695–702). Google Scholar

  • Helmer, S., & Lowe, D. G. (2004). Object class recognition with many local features. In CVPR workshop on generative model based vision. Google Scholar

  • Hinton, G. E., Ghahramani, Z., & Teh, Y. W. (2000). Learning to parse images. In Neural information processing systems 12 (pp. 463–469). Cambridge: MIT Press. Google Scholar

  • Ishwaran, H., & James, L. F. (2001). Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96(453), 161–173. MATHCrossRefMathSciNetGoogle Scholar

  • Ishwaran, H., & Zarepour, M. (2002). Dirichlet prior sieves in finite normal mixtures. Statistica Sinica, 12, 941–963. MATHMathSciNetGoogle Scholar

  • Jin, Y., & Geman, S. (2006). Context and hierarchy in a probabilistic image model. In IEEE conference on computer vision and pattern recognition (Vol. 2, pp. 2145–2152). Google Scholar

  • Jojic, N., & Frey, B. J. (2001). Learning flexible sprites in video layers. In IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 199–206). Google Scholar

  • Jordan, M. I. (2004). Graphical models. Statistical Science, 19(1), 140–155. MATHCrossRefMathSciNetGoogle Scholar

  • Jordan, M. I. (2005). Dirichlet processes, Chinese restaurant processes and all that. Tutorial at Neural Information Processing Systems. Google Scholar

  • Kovesi, P. (2005). MATLAB and Octave functions for computer vision and image processing. Available from http://www.csse.uwa.edu.au/~pk/research/matlabfns/.

  • LeCun, Y., Huang, F. J., & Bottou, L. (2004). Learning methods for generic object recognition with invariance to pose and lighting. In IEEE conference on computer vision and pattern recognition (Vol. 2, pp. 97–104). Google Scholar

  • Leibe, B., Leonardis, A., & Schiele, B. (2004). Combined object categorization and segmentation with an implicit shape model. In ECCV workshop on statistical learning in computer vision. Google Scholar

  • Liter, J. C., & Bülthoff, H. H. (1998). An introduction to object recognition. Zeitschrift für Naturforschung, 53c, 610–621. Google Scholar

  • Loeff, N., Arora, H., Sorokin, A., & Forsyth, D. (2006). Efficient unsupervised learning for localization and detection in object categories. In Neural information processing systems 18 (pp. 811–818). Cambridge: MIT Press. Google Scholar

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110. CrossRefGoogle Scholar

  • MacEachern, S. N. (1999). Dependent nonparametric processes. In Proceedings section on Bayesian statistical science (pp. 50–55). Alexandria: American Statistical Association. Google Scholar

  • Matas, J., Chum, O., Urban, M., & Pajdla, T. (2002). Robust wide baseline stereo from maximally stable extremal regions. In British machine vision conference (pp. 384–393). Google Scholar

  • Mikolajczyk, K., & Schmid, C. (2004). Scale and affine invariant interest point detectors. International Journal of Computer Vision, 60(1), 63–86. CrossRefGoogle Scholar

  • Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10), 1615–1630. CrossRefGoogle Scholar

  • Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D. L., & Kolobov, A. (2005). BLOG: Probabilistic models with unknown objects. In International joint conference on artificial intelligence 19 (pp. 1352–1359) Google Scholar

  • Miller, E. G., & Chefd’hotel, C. (2003). Practical nonparametric density estimation on a transformation group for vision. In IEEE conference on computer vision and pattern recognition (Vol. 2, pp. 114–121). Google Scholar

  • Miller, E. G., Matsakis, N. E., & Viola, P. A. (2000). Learning from one example through shared densities on transforms. In IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 464–471). Google Scholar

  • Murphy, K., Torralba, A., & Freeman, W. T. (2004). Using the forest to see the trees: A graphical model relating features, objects, and scenes. In Neural information processing systems 16. Cambridge: MIT Press. Google Scholar

  • Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9(2), 249–265. CrossRefMathSciNetGoogle Scholar

  • Pitman, J. (2002). Combinatorial stochastic processes. Technical Report 621, U.C. Berkeley Department of Statistics, August 2002. Google Scholar

  • Rodriguez, A., Dunson, D. B., & Gelfand, A. E. (2006). The nested Dirichlet process. Working Paper 2006-19, Duke Institute of Statistics and Decision Sciences. Google Scholar

  • Rosen-Zvi, M., Griffiths, T., Steyvers, M., & Smyth, P. (2004). The author-topic model for authors and documents. In Uncertainty in artificial intelligence 20 (pp. 487–494). Corvallis: AUAI Press. Google Scholar

  • Russell, B. C., Torralba, A., Murphy, K. P., & Freeman, W. T. (2005). LabelMe: A database and web-based tool for image annotation. Technical Report 2005-025, MIT AI Lab. Google Scholar

  • Shepard, R. N. (1980). Multidimensional scaling, tree-fitting, and clustering. Science, 210, 390–398. CrossRefMathSciNetGoogle Scholar

  • Simard, P. Y., LeCun, Y. A., Denker, J. S., & Victorri, B. (1998). Transformation invariance in pattern recognition: Tangent distance and tangent propagation. In B. O. Genevieve & K. R. Müller (Eds.), Neural networks: tricks of the trade (pp. 239–274). Berlin: Springer. CrossRefGoogle Scholar

  • Siskind, J. M., Sherman, J., Pollak, I., Harper, M. P., & Bouman, C. A. (2004, submitted). Spatial random tree grammars for modeling hierarchal structure in images. IEEE Transactions on Pattern Analysis and Machine Intelligence. Google Scholar

  • Sivic, J., Russell, B. C., Efros, A. A., Zisserman, A., & Freeman, W. T. (2005). Discovering objects and their location in images. In International conference on computer vision (Vol. 1, pp. 370–377). Google Scholar

  • Storkey, A. J., & Williams, C. K. I. (2003). Image modeling with position-encoding dynamic trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(7), 859–871. CrossRefGoogle Scholar

  • Sudderth, E. B. (2006). Graphical models for visual object recognition and tracking. PhD thesis, Massachusetts Institute of Technology. Google Scholar

  • Sudderth, E. B., Torralba, A., Freeman, W. T., & Willsky, A. S. (2005). Learning hierarchical models of scenes, objects, and parts. In International conference on computer vision (Vol. 2, pp. 1331–1338). Google Scholar

  • Sudderth, E. B., Torralba, A., Freeman, W. T., & Willsky, A. S. (2006a). Depth from familiar objects: A hierarchical model for 3D scenes. In IEEE conference on computer vision and pattern recognition (Vol. 2, pp. 2410–2417). Google Scholar

  • Sudderth, E. B., Torralba, A., Freeman, W. T., & Willsky, A. S. (2006b). Describing visual scenes using transformed Dirichlet processes. In Neural information processing systems 18 (pp. 1297–1304). Cambridge: MIT Press. Google Scholar

  • Teh, Y. W., Jordan, M. I., Beal, M. J., & Blei, D. M. (2006). Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101(476), 1566–1581. MATHCrossRefMathSciNetGoogle Scholar

  • Tenenbaum, J. M., & Barrow, H. G. (1977). Experiments in interpretation-guided segmentation. Artificial Intelligence, 8, 241–274. CrossRefGoogle Scholar

  • Torralba, A. (2003). Contextual priming for object detection. International Journal of Computer Vision, 53(2), 169–191. CrossRefGoogle Scholar

  • Torralba, A., Murphy, K. P., & Freeman, W. T. (2004). Sharing features: Efficient boosting procedures for multiclass object detection. In IEEE conference on computer vision and pattern recognition (Vol. 2, pp. 762–769). Google Scholar

  • Tu, Z., Chen, X., Yuille, A. L., & Zhu, S. C. (2005). Image parsing: Unifying segmentation, detection, and recognition. International Journal of Computer Vision, 63(2), 113–140. CrossRefGoogle Scholar

  • Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate complexity and their use in classification. Nature Neuroscience, 5(7), 682–687. Google Scholar

  • Viola, P., & Jones, M. J. (2004). Robust real-time face detection. International Journal of Computer Vision, 57(2), 137–154. CrossRefGoogle Scholar

  • Weber, M., Welling, M., & Perona, P. (2000). Unsupervised learning of models for recognition. In European conference on computer vision (pp. 18–32). Google Scholar

  • Williams, C. K. I., & Allan, M. (2006). On a connection between object localization with a generative template of features and pose-space prediction methods. Informatics Research Report 719, University of Edinburgh. Google Scholar

  • 0 thoughts on “Erik Sudderth Dissertation Abstract”

      -->

    Leave a Comment

    Your email address will not be published. Required fields are marked *